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Abstract

Distributed Llama is a system designed to distribute the inference of
large language models using readily available home devices. By distribut-
ing computation and weights across multiple devices, the system achieves
accelerated inference with each additional device integrated into the sys-
tem. This approach optimizes the utilization of resources for enhanced

performance.

1 Introduction

Large language models (LLMs) require
a significant amount of memory. For
most home computers, running the in-
ference of such large models is un-
feasible. Although quantization miti-
gates this problem to some extent, very
large models are still unattainable for
home use. For example, Llama 2 [I]
with 70 billion parameters, quantized
to Q40 format, requires a minimum of
36.98GB of memory.

Projects such as Petals [2] or
Llama.cpp MPI [3] enable the execu-
tion of Large Language Models (LLMs)
across multiple devices by partitioning
neural network layers. This division
distributes the memory requirements
among all devices, but the drawback
is that devices do not operate in par-
allel; each device processes only its as-

signed layers. Consequently, calcula-
tions occur sequentially, with only one
device performing computations at a
time, while the others wait for the re-
sults of the preceding one.
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Figure 1: Layer division using Petals or
Llama.cpp MPI; each color represents
a separate device.

Distributed Llama addresses these
challenges by introducing an alterna-
tive method to partition Large Lan-



guage Models (LLMs). In this sys-
tem, the model is horizontally divided,
where each device receives nearly all
layers but is responsible only for for-
warding its designated fragment of the
layer. Additionally, each device retains
in memory only the weights necessary
for forwarding the assigned fragment.
Since certain LLM layers demand the
complete output from the preceding
layer, Distributed Llama consolidates
outputs and synchronizes all devices.
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Figure 2: Layer division using
Distributed Llama; each color repre-
sents a separate device.

Some layers were not parallelized
across multiple devices because the
computational workload was too small,

or the data to be synchronized was too
large to justify the benefits of paral-
lelization. Consequently, one device
processes a slightly greater number of
layers and requires slightly more mem-
ory than the others. We designate this
device as the root device.

Distributed Llama supports weight
quantization to reduce memory re-
quirements. Additionally, it supports
the quantization of data required for
synchronization, significantly reducing
the amount of information needed to
be transferred across devices.

2 Tests

To test this approach I chose 8 Rasp-
berry PI 4B 8GB devices connected
together via Gigabit Ethernet to TP-
Link LS1008G Switch. Raspberry PI
4B has quite slow 1500 Mhz proces-
sor and only 4 cores but it’s enough
to observe how the new approach be-
haves when increasing the number of
devices in the system. All tests were
performed on quantized weights to Q40
format and quantized synchronization
data to Q80 format.

Llama 2 7B 1 Device 2 Devices 4 Devices 8 Devices
Total 1312.50 ms | 793.69 ms 494.00 ms | 588.19 ms
Inference 1307.94 ms | 739.00 ms 458.81 ms 296.69 ms
Synchronization 1.81 ms 52.50 ms 34.06 ms 289.75 ms

Figure 3: Single-token generation time for the Llama 2 7B model on Raspberry
Pi 4B 8GB devices. Number of samples: 16.



Llama 2 13B 1 Device 2 Devices 4 Devices 8 Devices
Total - 1497.19 ms | 848.19 ms | 1114.88 ms
Inference - 1465.06 ms | 746.88 ms 460.8 ms
Synchronization | - 30.88 ms 99.50 ms 652.88 ms

Figure 4: Single-token generation time for the Llama 2 13B model on Raspberry
Pi 4B 8GB devices. Generation on single device was not possible due to memory

limitations. Number of samples: 16.

Llama 2 70B 1 Device 2 Devices 4 Devices 8 Devices
Total - - - 4842.81 ms
Inference - - - 2121.94 ms
Synchronization | - - - 2719.62 ms

Figure 5: Single-token generation time for the Llama 2 70B model on Raspberry
Pi 4B 8GB devices. Generation was possible only on 8 devices due to memory

limitations. Number of samples: 16.

Model 2 Devices 4 Devices 8 Devices
Llama 2 7B 1112 kB 2830 kB 6008 kB
Llama 2 13B 1742 kB 4430 kB 9407 kB
Llama 2 70B - - 32873 kB

Figure 6: The amount of data required to synchronize devices for generating
one token. The transferred data was quantized to Q80 format.

3 Discussion

Generating a single token requires min-
imal data for synchronization com-
pared to the overall size of the model.
As the number of devices increases, the
data needed for synchronization also
grows, leading to a slowdown in infer-
ence. However, despite this challenge,
a significant improvement in inference
speed is observed in direct proportion
to the number of devices in the system,
aligning with the project’s overarching
goal.
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Synchronization tests were con-
ducted on a slow Gigabit Ethernet
link. The speed of this link signifi-
cantly influences the final results. For
instance, the inference time of Llama 2
70B is faster than the synchronization
time. Using a faster link will result in
a greater benefit from distributed com-
puting.

Future work: The described ap-
proach can also be applied to dis-
tributed learning of LLMs, enabling
accelerated learning speeds through
the utilization of multiple devices.
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