![Distributed Llama](.github/cover.png) # Distributed Llama [![GitHub Actions Workflow Status](https://img.shields.io/github/actions/workflow/status/b4rtaz/distributed-llama/.github%2Fworkflows%2Fmain.yml?style=flat-square)](https://github.com/b4rtaz/distributed-llama/actions) [![License: MIT](https://img.shields.io/github/license/mashape/apistatus.svg?style=flat-square)](/LICENSE) [![Discord](https://discordapp.com/api/guilds/1245814812353495070/widget.png?style=shield)](https://n4no.com/projects/distributedLlama/discord.php) Connect home devices into a powerful cluster to accelerate LLM inference. More devices mean faster performance, leveraging tensor parallelism and high-speed synchronization over Ethernet. Supports Linux, macOS, and Windows. Optimized for ARM and x86_64 AVX2 CPUs. **How to Run** - [πŸ’» How to Run on Linux, MacOS or Windows](./docs/HOW_TO_RUN_LINUX_MACOS_WIN.md) - [πŸ“ How to Run on Raspberry Pi](./docs/HOW_TO_RUN_RASPBERRYPI.md) - [🧠 How to Run on GPU](./docs/HOW_TO_RUN_GPU.md) **News** - 16 Sep 2025 - Qwen 3 MoE models are now supported on Vulkan. - 5 Sep 2025 - Qwen 3 MoE models are now supported on CPU. - 3 Aug 2025 - Qwen 3 0.6B, 1.7B, 8B and 14B models are now supported. - 23 Mar 2025 - [πŸŒ‹ Experimental Vulkan support](https://github.com/b4rtaz/distributed-llama/releases/tag/v0.13.0) - 12 Feb 2025 - 🚧 Merged the [fundamental codebase refactor](https://github.com/b4rtaz/distributed-llama/releases/tag/v0.12.0) - 9 Jan 2025 - [🍎 Llama 3.3 70B on 4 x Mac Mini M4 Pro 24GB RAM](https://github.com/b4rtaz/distributed-llama/discussions/147) ### πŸ”₯ Setup Root Node by Single Command Python 3 and C++ compiler required. The command will download the model and the tokenizer. | Model | Size | Command | | --------------------------------- | -------- | ---------------------------------------------------- | | Llama 3.1 8B Instruct Q40 | 6.32 GB | `python launch.py llama3_1_8b_instruct_q40` | | Llama 3.1 405B Instruct Q40 | 238 GB | `python launch.py llama3_1_405b_instruct_q40`. | | Llama 3.2 1B Instruct Q40 | 1.7 GB | `python launch.py llama3_2_1b_instruct_q40` | | Llama 3.2 3B Instruct Q40 | 3.4 GB | `python launch.py llama3_2_3b_instruct_q40` | | Llama 3.3 70B Instruct Q40 | 40 GB | `python launch.py llama3_3_70b_instruct_q40` | | DeepSeek R1 Distill Llama 8B Q40 | 6.32 GB | `python launch.py deepseek_r1_distill_llama_8b_q40` | | Qwen 3 0.6B Q40 | 0.9 GB | `python launch.py qwen3_0.6b_q40` | | Qwen 3 1.7B Q40 | 2.2 GB | `python launch.py qwen3_1.7b_q40` | | Qwen 3 8B Q40 | 6.7 GB | `python launch.py qwen3_8b_q40` | | Qwen 3 14B Q40 | 10.9 GB | `python launch.py qwen3_14b_q40` | | Qwen 3 30B A3B Q40 | 17.0 GB | `python launch.py qwen3_30b_a3b_q40` | ### πŸ› οΈ Convert Model Manually * [πŸ€— How to Convert Hugging Face Model](./docs/HOW_TO_CONVERT_HF_MODEL.md) ### 🚧 Known Limitations * You can run Distributed Llama only on 1, 2, 4... 2^n nodes. * The maximum number of nodes is equal to the number of KV heads in the model [#70](https://github.com/b4rtaz/distributed-llama/issues/70). * Only the following quantizations are supported [#183](https://github.com/b4rtaz/distributed-llama/issues/183): * `q40` model with `q80` `buffer-float-type` * `f32` model with `f32` `buffer-float-type` ### πŸ‘· Architecture ```` [πŸ”€ SWITCH OR ROUTER] | | | | | | | |_______ πŸ”Έ device1 (ROOT) 10.0.0.1 | | |_________ πŸ”Ή device2 (WORKER 1) 10.0.0.2:9999 | |___________ πŸ”Ή device3 (WORKER 2) 10.0.0.3:9999 |_____________ πŸ”Ή device4 (WORKER 3) 10.0.0.4:9999 ... ```` The project is split up into two parts: * **πŸ”Έ Root node** - it's responsible for loading the model and weights and forward them to workers. Also, it synchronizes the state of the neural network. The root node is also a worker, it processes own slice of the neural network. * **πŸ”Ή Worker node** - it processes own slice of the neural network. It doesn't require any configuration related to the model. You always need the root node and you can add 2^n - 1 worker nodes to speed up the inference. The RAM usage of the neural network is split up across all nodes. The root node requires a bit more RAM than worker nodes. ### 🎹 Commands * `dllama inference` - run the inference with a simple benchmark, * `dllama chat` - run the CLI chat, * `dllama worker` - run the worker node, * `dllama-api` - run the API server.
🎹 Supported Arguments
Inference, Chat, API | Argument | Description | Example | | ---------------------------- | ---------------------------------------------------------------- | -------------------------------------- | | `--model ` | Path to model. | `dllama_model_meta-llama-3-8b_q40.m` | | `--tokenizer ` | Tokenizer to model. | `dllama_tokenizer_llama3.t` | | `--buffer-float-type ` | Float precision of synchronization. | `q80` | | `--workers ` | Addresses of workers (ip:port), separated by space. | `10.0.0.1:9999 10.0.0.2:9999` | | `--max-seq-len ` | The maximum sequence length, it helps to reduce the RAM usage. | `4096` | Inference, Chat, Worker, API | Argument | Description | Example | | ---------------------------- | --------------------------------------------------------------------- | ----------------------------------- | | `--nthreads ` | Amount of threads. Don't set a higher value than number of CPU cores. | `4` | Worker, API | Argument | Description | Example | | ---------------------------- | --------------------------------- | ----------------- | | `--port ` | Binding port. | `9999` | Inference | Argument | Description | Example | | ---------------------------- | ------------------------------ | ------------------ | | `--prompt ` | Initial prompt. | `"Hello World"` | | `--steps ` | Number of tokens to generate. | `256` |
## πŸ“Š Measurements Please check the [discussions](https://github.com/b4rtaz/distributed-llama/discussions) section, where many measurements were published on different configurations. ## βœ‹ Contribution Feel free to contribute to this project. For small changes, simply create a new merge request. For larger changes, please create an issue to discuss your plans. Please follow these guidelines when contributing: * Make only minimal changes and avoid modifying files that are not necessary. * Ensure the code is compatible across all supported systems and CPUs. * This repository is maintained in English. ## πŸ’‘ License This project is released under the MIT license. ## πŸ“– Citation ``` @misc{dllama, author = {BartΕ‚omiej Tadych}, title = {Distributed Llama}, year = {2024}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/b4rtaz/distributed-llama}}, commit = {7eb77ca93ec0d502e28d36b6fb20039b449cbea4} } ```