Files
dllama/docs/HOW_TO_RUN_LINUX_MACOS_WIN.md
Chris 42172cbb6f
Some checks failed
main / Linux (amd64, ubuntu-22.04) (push) Successful in 49s
main / Linux (arm64, ubuntu-24.04-arm) (push) Has been cancelled
main / Windows (push) Has been cancelled
init
2025-10-24 11:42:14 +02:00

90 lines
2.7 KiB
Markdown

# How to Run Distributed Llama on 💻 Linux, MacOS or Windows
This article describes how to run Distributed Llama on 4 devices, but you can also run it on 1, 2, 4, 8... devices. Please adjust the commands and topology according to your configuration.
````
[🔀 SWITCH OR ROUTER]
| | | |
| | | |_______ 🔸 device1 (ROOT) 10.0.0.1
| | |_________ 🔹 device2 (WORKER 1) 10.0.0.2:9999
| |___________ 🔹 device3 (WORKER 2) 10.0.0.3:9999
|_____________ 🔹 device4 (WORKER 3) 10.0.0.4:9999
````
1. Install Git and C++ compiler on **🔸🔹 ALL** devices:
* Linux:
```
sudo apt install git build-essential
```
* MacOS
```
brew install git
```
* Windows
Install Git and Mingw (via [Chocolatey](https://chocolatey.org/install)):
```powershell
choco install git mingw
```
2. Connect **🔸🔹 ALL** devices to your **🔀 SWITCH OR ROUTER** via Ethernet cable. If you're using only two devices, it's better to connect them directly without a switch.
3. Clone this repository and compile Distributed Llama on **🔸🔹 ALL** devices:
```sh
git clone https://github.com/b4rtaz/distributed-llama.git
cd distributed-llama
make dllama
make dllama-api
```
4. Download the model to the **🔸 ROOT** device using the `launch.py` script. You don't need to download the model on worker devices.
```sh
python3 launch.py # Prints a list of available models
python3 launch.py llama3_2_3b_instruct_q40 # Downloads the model to the root device
```
5. Start workers on all **🔹 WORKER** devices:
```sh
./dllama worker --port 9999 --nthreads 4
```
6. Run the inference to test if everything works fine on the **🔸 ROOT** device:
```sh
./dllama inference \
--prompt "Hello world" \
--steps 32 \
--model models/llama3_2_3b_instruct_q40/dllama_model_llama3_2_3b_instruct_q40.m \
--tokenizer models/llama3_2_3b_instruct_q40/dllama_tokenizer_llama3_2_3b_instruct_q40.t \
--buffer-float-type q80 \
--nthreads 4 \
--max-seq-len 4096 \
--workers 10.0.0.2:9999 10.0.0.3:9999 10.0.0.4:9999
```
7. To run the API server, start it on the **🔸 ROOT** device:
```sh
./dllama-api \
--port 9999 \
--model models/llama3_2_3b_instruct_q40/dllama_model_llama3_2_3b_instruct_q40.m \
--tokenizer models/llama3_2_3b_instruct_q40/dllama_tokenizer_llama3_2_3b_instruct_q40.t \
--buffer-float-type q80 \
--nthreads 4 \
--max-seq-len 4096 \
--workers 10.0.0.2:9999 10.0.0.3:9999 10.0.0.4:9999
```
Now you can connect to the API server:
```
http://10.0.0.1:9999/v1/models
```
8. When the API server is running, you can open the web chat in your browser, open [llama-ui.js.org](https://llama-ui.js.org/), go to the settings and set the base URL to: `http://10.0.0.1:9999`. Press the "save" button and start chatting!