Files
dllama/DOCKER_README.md
Chris 42172cbb6f
Some checks failed
main / Linux (amd64, ubuntu-22.04) (push) Successful in 49s
main / Linux (arm64, ubuntu-24.04-arm) (push) Has been cancelled
main / Windows (push) Has been cancelled
init
2025-10-24 11:42:14 +02:00

202 lines
5.2 KiB
Markdown

# Distributed Llama Docker Setup for Raspberry Pi
This directory contains Docker configurations to run Distributed Llama on Raspberry Pi devices using containers. There are two variants:
1. **Controller** (`Dockerfile.controller`) - Downloads models and runs the API server
2. **Worker** (`Dockerfile.worker`) - Runs worker nodes that connect to the controller
## Quick Start with Docker Compose
### 1. Download a Model
First, download a model using the controller container:
```bash
# Create a models directory
mkdir -p models
# Download a model (this will take some time)
docker-compose run --rm controller --download llama3_2_3b_instruct_q40
```
### 2. Start the Distributed Setup
```bash
# Start all services (1 controller + 3 workers)
docker-compose up
```
The API will be available at `http://localhost:9999`
### 3. Test the API
```bash
# List available models
curl http://localhost:9999/v1/models
# Send a chat completion request
curl -X POST http://localhost:9999/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama",
"messages": [{"role": "user", "content": "Hello, how are you?"}],
"max_tokens": 100
}'
```
## Manual Docker Usage
### Building the Images
```bash
# Build controller image
docker build -f Dockerfile.controller -t distributed-llama-controller .
# Build worker image
docker build -f Dockerfile.worker -t distributed-llama-worker .
```
### Running the Controller
```bash
# Download a model first
docker run -v ./models:/app/models distributed-llama-controller --download llama3_2_3b_instruct_q40
# Run API server (standalone mode, no workers)
docker run -p 9999:9999 -v ./models:/app/models distributed-llama-controller \
--model llama3_2_3b_instruct_q40
# Run API server with workers
docker run -p 9999:9999 -v ./models:/app/models distributed-llama-controller \
--model llama3_2_3b_instruct_q40 \
--workers 10.0.0.2:9999 10.0.0.3:9999 10.0.0.4:9999
```
### Running Workers
```bash
# Run a worker on default port 9999
docker run -p 9999:9999 distributed-llama-worker
# Run a worker with custom settings
docker run -p 9998:9998 distributed-llama-worker --port 9998 --nthreads 2
```
## Available Models
You can download any of these models:
- `llama3_1_8b_instruct_q40`
- `llama3_1_405b_instruct_q40` (very large, 56 parts)
- `llama3_2_1b_instruct_q40`
- `llama3_2_3b_instruct_q40`
- `llama3_3_70b_instruct_q40`
- `deepseek_r1_distill_llama_8b_q40`
- `qwen3_0.6b_q40`
- `qwen3_1.7b_q40`
- `qwen3_8b_q40`
- `qwen3_14b_q40`
- `qwen3_30b_a3b_q40`
## Configuration Options
### Controller Options
- `--model <name>`: Model name to use (required)
- `--port <port>`: API server port (default: 9999)
- `--nthreads <n>`: Number of threads (default: 4)
- `--max-seq-len <n>`: Maximum sequence length (default: 4096)
- `--buffer-float-type <type>`: Buffer float type (default: q80)
- `--workers <addresses>`: Space-separated worker addresses
- `--download <model>`: Download a model and exit
### Worker Options
- `--port <port>`: Worker port (default: 9999)
- `--nthreads <n>`: Number of threads (default: 4)
## Environment Variables (Docker Compose)
You can customize the setup using environment variables:
```bash
# Set model and thread counts
MODEL_NAME=llama3_2_1b_instruct_q40 \
CONTROLLER_NTHREADS=2 \
WORKER_NTHREADS=2 \
docker-compose up
```
Available variables:
- `MODEL_NAME`: Model to use (default: llama3_2_3b_instruct_q40)
- `CONTROLLER_NTHREADS`: Controller threads (default: 4)
- `WORKER_NTHREADS`: Worker threads (default: 4)
- `MAX_SEQ_LEN`: Maximum sequence length (default: 4096)
- `BUFFER_FLOAT_TYPE`: Buffer float type (default: q80)
## Multi-Device Setup
To run across multiple Raspberry Pi devices:
### Device 1 (Controller)
```bash
# Run controller
docker run -p 9999:9999 -v ./models:/app/models distributed-llama-controller \
--model llama3_2_3b_instruct_q40 \
--workers 10.0.0.2:9999 10.0.0.3:9999 10.0.0.4:9999
```
### Devices 2-4 (Workers)
```bash
# Run worker on each device
docker run -p 9999:9999 distributed-llama-worker --nthreads 4
```
## Performance Tips
1. **Thread Count**: Set `--nthreads` to the number of CPU cores on each device
2. **Memory**: Larger models require more RAM. Monitor usage with `docker stats`
3. **Network**: Use wired Ethernet connections for better performance between devices
4. **Storage**: Use fast SD cards (Class 10 or better) or USB 3.0 storage for model files
## Troubleshooting
### Model Download Issues
```bash
# Check if model files exist
ls -la models/llama3_2_3b_instruct_q40/
# Re-download if corrupted
docker-compose run --rm controller --download llama3_2_3b_instruct_q40
```
### Worker Connection Issues
```bash
# Check worker logs
docker-compose logs worker1
# Test network connectivity
docker exec -it <controller_container> ping 172.20.0.11
```
### Resource Issues
```bash
# Monitor resource usage
docker stats
# Reduce thread count if CPU usage is too high
CONTROLLER_NTHREADS=2 WORKER_NTHREADS=2 docker-compose up
```
## Web Interface
You can use the web chat interface at [llama-ui.js.org](https://llama-ui.js.org/):
1. Open the website
2. Go to settings
3. Set base URL to: `http://your-pi-ip:9999`
4. Save and start chatting
## License
This Docker setup follows the same license as the main Distributed Llama project.