Files
dllama/docs/HOW_TO_RUN_LINUX_MACOS_WIN.md
Chris 42172cbb6f
Some checks failed
main / Linux (amd64, ubuntu-22.04) (push) Successful in 49s
main / Linux (arm64, ubuntu-24.04-arm) (push) Has been cancelled
main / Windows (push) Has been cancelled
init
2025-10-24 11:42:14 +02:00

2.7 KiB

How to Run Distributed Llama on 💻 Linux, MacOS or Windows

This article describes how to run Distributed Llama on 4 devices, but you can also run it on 1, 2, 4, 8... devices. Please adjust the commands and topology according to your configuration.

[🔀 SWITCH OR ROUTER]
      | | | |
      | | | |_______ 🔸 device1 (ROOT)     10.0.0.1
      | | |_________ 🔹 device2 (WORKER 1) 10.0.0.2:9999
      | |___________ 🔹 device3 (WORKER 2) 10.0.0.3:9999
      |_____________ 🔹 device4 (WORKER 3) 10.0.0.4:9999
  1. Install Git and C++ compiler on 🔸🔹 ALL devices:
  • Linux:

    sudo apt install git build-essential
    
  • MacOS

    brew install git
    
  • Windows

    Install Git and Mingw (via Chocolatey):

    choco install git mingw
    
  1. Connect 🔸🔹 ALL devices to your 🔀 SWITCH OR ROUTER via Ethernet cable. If you're using only two devices, it's better to connect them directly without a switch.

  2. Clone this repository and compile Distributed Llama on 🔸🔹 ALL devices:

git clone https://github.com/b4rtaz/distributed-llama.git
cd distributed-llama
make dllama
make dllama-api
  1. Download the model to the 🔸 ROOT device using the launch.py script. You don't need to download the model on worker devices.
python3 launch.py # Prints a list of available models

python3 launch.py llama3_2_3b_instruct_q40 # Downloads the model to the root device
  1. Start workers on all 🔹 WORKER devices:
./dllama worker --port 9999 --nthreads 4
  1. Run the inference to test if everything works fine on the 🔸 ROOT device:
./dllama inference \
  --prompt "Hello world" \
  --steps 32 \
  --model models/llama3_2_3b_instruct_q40/dllama_model_llama3_2_3b_instruct_q40.m \
  --tokenizer models/llama3_2_3b_instruct_q40/dllama_tokenizer_llama3_2_3b_instruct_q40.t \
  --buffer-float-type q80 \
  --nthreads 4 \
  --max-seq-len 4096 \
  --workers 10.0.0.2:9999 10.0.0.3:9999 10.0.0.4:9999
  1. To run the API server, start it on the 🔸 ROOT device:
./dllama-api \
  --port 9999 \
  --model models/llama3_2_3b_instruct_q40/dllama_model_llama3_2_3b_instruct_q40.m \
  --tokenizer models/llama3_2_3b_instruct_q40/dllama_tokenizer_llama3_2_3b_instruct_q40.t \
  --buffer-float-type q80 \
  --nthreads 4 \
  --max-seq-len 4096 \
  --workers 10.0.0.2:9999 10.0.0.3:9999 10.0.0.4:9999

Now you can connect to the API server:

http://10.0.0.1:9999/v1/models
  1. When the API server is running, you can open the web chat in your browser, open llama-ui.js.org, go to the settings and set the base URL to: http://10.0.0.1:9999. Press the "save" button and start chatting!